# Communication Manual 

## THERMO-CON

Model No.

HEC001 series HEC003 series HEC012 series

## Keep available whenever necessary.

This manual is copyrighted and all rights are reserved by SMC Corporation, and may not, in whole or in part, be copied, photocopied or translated without prior written consent of SMC.

History

| Version | Preface | Contents | Chap.1 | Chap.2 | Chap.3 | Chap.4 | Chap.5 | Chap.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 |  |  |  |  |  |  |  |  |
| 1.1 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## Record of Changes

| Version | Contents | Date |
| :---: | :--- | :---: |
| 1.0 | First edition | June.2006 |
| 1.1 | The series name is added to the cover.The product photography of the <br> cover is deleted. | May.2010 |
|  |  |  |
|  |  |  |

## Preface

Thank you very much for purchasing SMC Thermo-con.

This manual contains description for communication of this product for your full benefit from this product.

Read the operation manual carefully before use of this product, and understand the outline of the product and safety instructions well. Instructions in the categories, "Danger", "Warning" and "Caution", are important for safety and must be duly followed.

Please contact the following for any question and unclear points regarding the Thermo-con.

## SMC Corporation R\&D Center

Product Development Division-6
Address: 4-2-2, KINUNODAI,TSUKUBAMIRAI-CITY , IBARAKI-KEN 300-2493, JAPAN
Phone:+81-297-52-6666
Fax:+81-297-20-5007
E-mail:kaihatsu_6_g3@smcjpn.co.jp

Notice: The content of this manual can be revised without a previous notice.

## CONTENTS

Pages
1 Preparation for Communication ..... 1-1
2 Specifications of Communication Method ..... 2-1
3 Communication Format ..... 3-1
3.1 Control code used for communication ..... 3-1
3.2 Command code list ..... 3-1
3.3 Communication procedures and format ..... 3-2
3.4 Calculation of checksum ..... 3-3
4 Details of Communication format ..... 4-1
4.1 Temperature setting (without writing EEPROM) ..... 4-1
4.2 Reading setting temperature ..... 4-1
4.3 Reading internal sensor ..... 4-2
4.4 Reading external sensor ..... 4-3
4.5 Reading alarm status ..... 4-3
4.6 Reading temperature average data ..... 4-5
4.7 Offset setting (without writing EEPROM) ..... 4-5
4.8 Reading offset ..... 4-5
4.9 Temperature setting (with writing EEPROM) ..... 4-6
4.10 Offset setting (with writing EEPROM) ..... 4-7
5 Troubleshooting ..... 5-1
6 Communication Format and
Examples of Answers from Thermo-con ..... 6-1

## Preparation for CommunicationSNC

## 1 Preparation for Communication

Make preparation for using communication facility as follows.

1) Turn off the power switch of Thermo-con.
2) Connect communication cable to communication connector (RS-485 of RS-232C) of Thermo-con.

- Use twist pair shield cable as communication cable.
-Connect the host and thermo-con with the cross cable for RS-232C and the straight cable for RS-485.
-Connect shielded cable of communication cable to communication connector and drop it to FG(flame ground).
-Connection drawing for communication is shown in the Figures 1-1 and 1-2.
-Length of communication cable for RS-485 shall be limited to around 500[m] in total, and that for RS232C shall be 15[m].
- If communication cable for RS-485 is longer, connect terminating resistance ( $220 \Omega, 1 / 2 \mathrm{w}$ ) to each + and - terminal of the host computer and the farthest Thermo-con.

3) Turn on the power switch of Thermo-con.
4) Select communication types for all Thermo-cons. See the operation manual of the details.
5) That's all for preparation of communication. Then if a communication command from the host computer is given, each Thermo-con will reply it.


Figure1-1 Communication Connection (RS-485)

| Host Comput RS-232C | Thermo-con RS-232C |  |
| :---: | :---: | :---: |
| Symbol | Pin No. | Symbol |
| FG | come | FG |
| RD | 2 | RD |
| SD | 3 | SD |
| SG | 5 | SG |
| RS | Short |  |
| CS |  |  |

Figure1-2 Communication Connection (RS-232C)

## 2 Specifications of Communication Method

| - Standards . | RS-485 or RS-232C |
| :---: | :---: |
| - Circuit type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | Half duplex |
| - Communication type $\cdot$. . . . . . . . . . . . . . . . . . . . . . | Asynchronous |
| - Communication speed $\cdot$. . . . . . . . . . . . . . . . . . . . . | Changeable, 600,1200,2400,4800,9600,19200 bps |
| - Character code - | ASCII |
| - Parity.............................................. | Select, Nil, even number, odd number |
| - Start bit $\cdot$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 1 bit |
| - Data length | Select 7 bit or 8 bit. |
|  | Select 1 bit or 2 bit. |
| -Block check.................................... | Sum check |

Note: Values underlined indicate default values at all reset. It is set to these values when delivered.

## 3

## Communication Format

### 3.1 Control code used for communication

| Control code | ASCII code |
| :---: | :---: |
| ENQ | 05 H |
| STX | 02 H |
| ETX | 03 H |
| ACK of ASCII code indicates hexa code. |  |
| CR | 06 H |
| SOH | 00 H |

### 3.2 Command code list

| Command code (COM) | Contents |
| :--- | :--- |
| 31 H | Set temperature (without writing EEPROM) and read |
| 32 H | Read internal sensor |
| 33 H | Read external sensor |
| 34 H | Read alarm status <br> 35 H <br> (It is same as reading external sensor in this model.) |
| 36 H | Set offset (without writing EEPROM) and read |
| 37 H | Set temperature (with writing EEPROM) |
| 38 H | Set offset (with writing EEPROM) |

## SMC Communication Format

### 3.3 Communication procedures and format

The host computer has the initiative of sequence. Sequence always starts from the host computer and each Thermo-con replies it.

If communication data is processed normally, the Thermo-con returns specified response and if processing communication data is failed, no response is returned.

When no response is returned to the host computer from the Thermo-con even if waiting for 3 sec . resend the data. The Thermo-con returns response after waiting for 50 msec .

For communication of plural number of communication data, wait until the return message is received from the thermo-con to send the next communication data. It sometimes cannot return the messages properly when the communication data is received successively.

## Selection of Unit Specification

-There are two cases in communication format, which are specifying unit No. and not.
-When one Thermo-con is used, select "without secifying unit" and when two or more Thermo-cons are used, select " with specifying unit".
-When several Thermo-con are used with without specified unit No.,correct control is not realized due to data conflict.

- In the case of use with specified unit No.,ensure to coincide communication No. and each Thermo-con unit No.
(1) Setting Change

<Specifying unit>
Host $\rightarrow$

| SOH | UT | STX | COM | Data , D,, | ETX | Check sum | CR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| $\leftarrow$ | Thermo-con |  |
| :---: | :---: | :---: |
| ACK | UT | CR |

(2) Confirming and reading

(H) (L)


| Host $\rightarrow$ |  |
| :--- | :--- |
| ACK | CR |

(Possible to omit)

## Communication Format



- COM indicates communication command.
-UT indicates unit No. of each Thermo-con. Unit No. is the No. to identify each Thermo-cons when 2 or more Thermo-cons are linked by communication. Set this No. with second mode of Thermocon within O-F. (UT is the code adding 30 H to unit No.. $30 \mathrm{H}---3 \mathrm{FH}$.)
-As for symbols at communication, minus is indicated by "-" (2DH by ASCII code) and plus is indicated by " 0 " ( 30 H by ASCII code).
- In case of setting temperature and offset with communication, data out of set range isn't memorised. (If communication format is correct, ACK returns.)
-When writing in EEPROM is specified, changed data is memorized in EEPROM each time. Since writing life of EEPROM is (approx. 1 million times), EEPROM is changed only when data is changed.


### 3.4 Calculation of Check Sum

Calculation range ---------------- From the second byte to ETX when there is no ETX, add before check sum.

Calculating method $\qquad$ -Take out the lower 1 byte of the total.
eg.) Set temperature to 30 deg.C (without unit specified)

eg.) Read Thermo-con internal sensor of unit No. 2


Note) Check sum is not ASCII code.

Data of UT and Check Sum

| Character data | $0 \ldots 9$ | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| ASCII | $30 \mathrm{H} \ldots 39 \mathrm{H}$ | 41 H | 42 H | 43 H | 44 H | 45 H | 46 H |
| UT and check sum | $30 \mathrm{H} \ldots 39 \mathrm{H}$ (ditto) | 3 AH | 3 BH | 3 CH | $3 D \mathrm{H}$ | 3 EH | 3 FH |

## 4

## Details of Communication Format

## 4-1 Temperature setting (without writing EEPROM)

The host computer sets temperature of each Thermo-con. In this command, temperature setting data is not written in EEPROM. This data is invalidated by turning off power.

The setting range is from 10.0 to 60.0 deg.C. As 0.1 deg. $C$ is the minimum unit, the number in the hundredths place $\left(10^{-2}\right)$ should always be $0(=30 \mathrm{H})$. (When the value at every 0.01 deg.C is input, it is rounded off.)

| Host $\rightarrow$ |
| :--- |
| STX 31 H Setting data ETX Check sum CR <br> $10^{1} 10^{\circ} 10^{-1} 10^{-2}$      |


| $\leftarrow$ ACK | CR |
| :--- | :--- |

<Specifying unit>
Host $\rightarrow$

| SOH | UT | STX | 31 H | Setting data | ETX | Check sum | CR |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{1}$ |  |  |  |  |  |  |  |  | $10^{0}$ | $10^{-1}$ | $10^{-2}$ | $(\mathrm{H})$ | $(\mathrm{L})$ |



## 4-2 Reading setting temperature

As 0.1 deg. $C$ is the minimum unit, the number in the hundredths place $\left(10^{-2}\right)$ is always $0(=30 \mathrm{H})$.


| Host $\rightarrow$ |  |
| ---: | :--- | :--- |
| ACK | CR |
| (Possible to omit) |  |

## SMC Details of Communication Format

<Specifying unit>
Host $\rightarrow$

| SOH | UT | ENQ | 31 H | Check sum | CR |
| :---: | :---: | :---: | :---: | :---: | :---: |

(H) (L)
$\leftarrow$ Thermo-con

| SOH | UT | STX | 31 H | Setting data | ETX | Check sum | CR |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $10^{1}$ |  |  |  |  |  |  |  |  |
| $10^{0}$ | $10^{-1}$ | $10^{-2}$ | $(\mathrm{H})$ | $(\mathrm{L})$ |  |  |  |  |


| Host $\rightarrow$ |  |  |
| ---: | :--- | :--- |
| ACK | UT | CR |
| (Possible to omit) |  |  |

## 4-3 Reading internal sensor

As the minimum unit is 0.01 deg. $C$, the value in the hundredths place can be read.

(H) (L)
$\leftarrow$ Thermo-con

| STX | 32 H | Internal sensor | ETX | Check sum | CR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{1} \quad 10^{0} \quad 10^{-1}$ |  |  |  |  |  |  | $10^{-2}$ | $(\mathrm{H})$ | $(\mathrm{L})$ |


| Host $\rightarrow$ |  |
| :--- | :--- |
| ACK | CR |

Note) 2DH is entered in $10^{1}$ digit "-" is attached to temperature data.
<Specifying unit>
Host $\rightarrow$

| SOH | UT | ENQ | $32 H$ | Check sum | CR |
| :---: | :---: | :---: | :---: | :---: | :---: |

(H) (L)

Host $\rightarrow$

| ACK | UT | CR |
| :--- | :--- | :--- |
| (Possible to omit) |  |  |

Note) 2DH is entered in10¹ digit "-" is attached to temperature data.

## 4-4 Reading external sensor

As the minimum unit is 0.01 deg.C, the value in the hundredths place can be read.
Host $\rightarrow$

| ENQ | 33 H | Check sum | CR |
| :--- | :--- | :--- | :--- |

(H) (L)

| $\leftarrow$ | Thermo-con |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STX | 33 H | External sensor | ETX | Check sum | CR |  |  |  |  |
| $10^{1} \quad 10^{0} \quad 10^{-1}$ |  |  |  |  |  |  | $10^{-2}$ | $(\mathrm{H})$ | $(\mathrm{L})$ |


| Host $\rightarrow$ |  |  |
| ---: | :--- | :--- |
| ACK | CR | (Possible to omit) |

Note) 2DH is entered in $10^{1}$ digit "-" is attached to temperature data.
<Specifying unit>

(H) (L)
$\leftarrow$ Thermo-con

| SOH | UT | STX | $33 H$ | External sensor | ETX | Check sum | CR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{1} 10^{\circ} \quad 10^{-1} \quad 10^{-2}$ |  |  |  |  |  |  |  |
| $(\mathrm{H})$ | $(\mathrm{L})$ |  |  |  |  |  |  |

Host $\rightarrow$

| ACK | UT | CR |
| :--- | :--- | :--- |
| (Possible to omit) |  |  |

Note) 2DH is entered in $10^{1}$ digit "-" is attached to temperature data.

## 4-5 Reading alarm status


<Specifying unit>


Data (D2, D2, D3) changes following bit line to ASCII code. (1 is for ON, 0 is for OFF)


When some alarms/warnings go off at the same time, D1 to D3 reaches the added value.
Ex. When the "Upper temperature limit alarm" and the "DC power voltage alarm" go off simultaneously, D2 will be $2^{3} \mathrm{X} 1+2^{2} \mathrm{X} 0+2^{1} \mathrm{X} 0+2^{0} \mathrm{X} 1=9(=39 \mathrm{H})$.

## Details of Communication Format

## 4-6 Reading temperature average data

Note) For this product, the average temperature data, Tm, indicates the temperature of the external sensor. Refer to "4-4 Reading external sensor" for the format.

## 4-7 Offset setting (without writing EEPROM)

Set offset of each Thermo-con from host. In this command, offset data loses effect with furning power to OFF because it isn't memorized into EEPROM.

It can be set at a minimum of every 0.01 deg.C.


Note)As for symbols, minus is indicated by "-" $(=2 \mathrm{DH})$ and plus is indicated by " 0 " $(=30 \mathrm{H})$.
<Specifying unit>


Note)As for symbols, minus is indicated by "-"(=2DH) and plus is indicated by "0" $=30 \mathrm{H})$.

## 4-8 Reading offset

As the minimum unit is 0.01 deg.C, the value in the hundredths place can be read.

(Possible to omit)
Note) As for symbols, minus is indicated by "-"(=2DH) and plus is indicated by "0" $=30 \mathrm{H})$.
<Specifying unit>
Host $\rightarrow$

| SOH | UT | ENQ | 36 H | Check sum | CR |
| :---: | :---: | :---: | :---: | :---: | :---: |

(H) (L)
$\leftarrow$ Thermo-con

| SOH | UT | STX | 36 H | Offset, | ETX | Check sum | CR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol $10^{\circ} 10^{-1} 10^{-2}$ |  |  |  |  |  |  |  |

Host $\rightarrow$

| ACK | UT | CR |
| :--- | :--- | :--- |
| (Possible to omit) |  |  |

Note) As for symbols, minus is indicated by "-" $(=2 \mathrm{DH})$ and plus is indicated by " 0 " $(=30 \mathrm{H})$.

## 4-9 Temperature setting (with writing EEPROM)

The host computer sets temperature of each Thermo-con. In this command, temperature setting data is written in EEPROM.

The setting range is from 10.0 to 60.0 deg.C. As 0.1 deg. $C$ is the minimum unit, the number in the hundredths place $\left(10^{-2}\right)$ should always be $0(=30 \mathrm{H})$. (When the value at every 0.01 deg.C is input, it is rounded off.)

<Specifying unit>
Host $\rightarrow$

| SOH | UT | STX | 37 H | Setting data | ETX | Check sum | CR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $10^{1}$ <br> $10^{0}$ <br> $10^{-1}$ $10^{-2}$ |  |  |  |  |  |  |  |
| $(\mathrm{H})$ | $(\mathrm{L})$ |  |  |  |  |  |  |


| $\leftarrow$ | Thermo-con |  |  |
| :---: | :---: | :---: | :---: |
| ACK | UT | CR |  |

## 4-10 Offset setting (with writing EEPROM)

Set offset of each Thermo-con from host. In this command, offset data is memorized into EEPROM. It can be set at every minimum unit of $+/-0.01$ deg.C.


Note)As for symbols, minus is indicated by "-"(=2DH) and plus is indicated by "0"(=30H).
<Specifying unit>


Note) As for symbols, minus is indicated by "-"(=2DH) and plus is indicated by " 0 " $(=30 \mathrm{H})$.

## 5 Troubleshooting

The table below shows the solutions for the problems.

| Problem | Cause | Solution |
| :---: | :---: | :---: |
| Communication cannot be made. | A wrong connecting cable is used. | Connect the host and the thermocon with the following cables: <br> A cross cable for RS-232C <br> A straight cable for RS-485 |
|  | The settings of the host and thermo-con are not consistent with each others. | Make the following settings of the host and the thermo-con consistent: <br> Unit Number, Baud Rate, Parity Bit, Data Length, Stop Bit |
|  | The program is incorrect. | Ensure that the program is made properly according to this operation manual. (Control code, command code, checksum, etc.) |
|  | The communication method is incorrect. | Use the communication method suitable for the specification of the thermo-con (RS-485, RS-232C). |
|  | It is influenced by the noise from outside. | Use a shield wire for the cable, and ground the shield to the field ground. |
|  | It is influenced by the reflected wave. | Install a terminating resistance. |
| Temperature cannot be set. | Four digits are not input for the setting temperature. | Input four digits for the setting temperature. As 0.1 deg. C is the minimum indication unit, input 0 $(=30 \mathrm{H})$ in the hundredths place. |
|  | Value out of the setting range is input. | Set it within the temperature setting range (between 10.0 and 60.0 deg.C). |
| Communication cannot be continued. | It exceeds the writable capacity of EEPROM (approx. 1 million times). | Ask SMC for repair. |
|  | The connecting cable comes off or broken. | Check the connecting cable. |
| The thermo-con does not give a correct answer. | The host sends more than one communication data successively. | When sending communication data, wait until an answer from the thermo-con is received to send the next data. |

## 6 Communication Format and Examples of Answers from Thermo-con

Examples of commands and answers from the thermo-con (unit unspecified)

| Command code ASCII | Command | Unit specified | Host requirement | Answer from thermo-con | Content |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | Reading setting temperature | No | 05313331 0D | $023132353030033 F 38$ OD | Answer "25.0 deg.C." |
| 31 | Temperature setting (without writing <br> EEPROM) | No | $023132353030033 F 38$ OD | 06 0D | Set at 25.0 deg.C |
| 32 | Reading internal sensor | No | 05323332 0D | 02323235303203 3F 3B 0D | Answer "25.02 deg.C" |
| 33 | Reading external sensor | No | 05333333 0D | $023333303032033 F 38$ 0D | Answer "30.02 deg.C" |
| 34 | Reading alarm status | No | 05343334 0D | 023430383003 3C 3C 0D | Answer <br> "ERR11" |
| 36 | Reading offset <br> Offset setting (without writing EEPROM) | No <br> No | 05363336 0D <br> 02363031353003 3F3C OD | ```0236 2D 31 35 3203 3F 3B OD 06 0D``` | Answer "-1.52 <br> deg.C" <br> Set at +1.50 <br> deg.C |
| 37 | Temperature setting (with writing EEPROM) | No | 02373235303003 3F3E OD | 06 0D | Set at 25.0 deg.C |
| 38 | Offset setting (with writing EEPROM) | No | 02383031353003 3F3E 0D | 06 0D | Set at +1.50 deg.C |

Examples of commands and answers from the thermo-con (unit specified)

| Command code ASCII | Command | Unit specified | Host requirement | Answer from thermo-con | Content |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | Reading setting temperature | 2 | 013205313638 0D | 01320231323530300332 3C 0D | $\begin{aligned} & \text { Answer "25.0 } \\ & \text { deg.C" } \end{aligned}$ |
| 31 | Temperature setting (without writing EEPROM) | 2 | $\begin{aligned} & 013202313235303003 \\ & 32 \text { 3C OD } \end{aligned}$ | 0632 OD | Set at 25.0 deg.C |
| 32 | Reading internal sensor | 2 | 013205323639 0D | $\begin{aligned} & 01320232323530320332 \\ & \text { 3F OD } \end{aligned}$ | Answer "25.02 deg.C" |
| 33 | Reading external sensor | 2 | 0132053336 3A 0D | $\begin{aligned} & 01320233333030320332 \\ & \text { 3C 0D } \end{aligned}$ | Answer "30.02 deg.C" |
| 34 | Reading alarm status | 2 | 0132053436 3B 0D | 01320234303830033030 OD | Answer "ERR11" |
| 36 | Reading offset <br> Offset setting (without writing EEPROM) | $2$ | $\begin{aligned} & 0132053636 \text { 3D OD } \\ & 013202363031353003 \\ & 33300 D \end{aligned}$ | $\begin{aligned} & 013202362 D 3135320332 \\ & \text { FF 0D } \\ & 0632 \text { 0D } \end{aligned}$ | Answer "-1.52 <br> deg.C" <br> Set at +1.50 <br> deg.C |
| 37 | Temperature setting (with writing EEPROM) | F | $\begin{aligned} & 01 \text { 3F } 02373235303003 \\ & 33 \text { 3F 0D } \end{aligned}$ | 06 3F 0D | Set at 25.0 deg.C |
| 38 | Offset setting <br> (with writing EEPROM) | F | 013 F 02383031353003 33 3F 0D | 06 3F 0D | Set at +1.50 deg.C |

