

Operation Manual

Compact Rotary Actuator CRQ2 Series Rack Pinion Type

O Thoroughly read and understand this operation manual to install and operate this product.

OPay particular attention to the safety statements.

ORetain this operation manual to read whenever needed.

Contents

1. Outline	$\frac{1}{2}$
2. Internal structure and parts description • • • • • • • • • • • • • • • • • • •	3
3. Basic circuit of the rotary actuator • • • • • • • • • • • • • • • • • • •	5
4. Mounting • • • • • • • • • • • • • • • • • • •	6 6 7 7
5. Setting rotation time \cdot	8 10 11 11
6. Rotary actuator with Autoswitch • • • • • • • • • • • • • • • • • • •	12 13 13
7. Cushions · · · · · · · · · · · · · · · · · · ·	14
8. Maintenance \cdot Inspection \cdot	$ \begin{array}{ccc} 1 & 5 \\ 1 & 5 \\ 1 & 5 \\ 1 & 6 \\ 1 & 7 \\ \end{array} $

1. Outline

This operation manual is for rack pinion type compact rotary actuator. Cautions will be given on the load (inertia moment), rotation time and others. Please read through the manual before starting operation.

1-1 Specification

Table 1 Specification-1					
Size	10	15	20	30	40
Operating fluid		A	ir (Non-Iu	be)	
Max. operating pressure	0.7	MPa		1 MPa	
Min. operating pressure	0.15	MPa		0.1 MPa	l
Ambient temp. and operating fluid temp.	0∼60°C (No freeze)				
Cushion	Rubber cushion No. Air cushion				nion
Angle adjustment	$\pm 5^{\circ}$				
Rotation angle	80° $\sim 100^{\circ}$ \swarrow 170° $\sim 190^{\circ}$ \checkmark 350° $\sim 370^{\circ}$				
Port size	M5×0.8 Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8				·
Supporting style	Basic type				
Output(N ⋅ m)	0.3	0.75	1.8	3.1	5.3

Table 2 Specification-2

		Allowable kir	Safe adjustment range of		
Size	Allowable k	inetic energy	, (mJ)	Cushion	rotating time
Size	No air	Rubber	Air	Cushion	Rotation time
	cushion	cushion	cushion	angle	(s/90 °)
10	—	0.25	—	—	0.2~0.7
15	—	0.39	—	—	0.2~0.7
20	25	_	120	40°	0.2 ~1
30	48	—	250	40 °	$0.2 \sim 1$
40	81	—	400	40°	0.2 ~1

Allowable kinetic energy of cushion type is the max. adsorbing energy when the cushion needle adjustment is optimum. Operation with the speed lower than adjustment range lead to cause stick clip or termination of operation.

Size	Sizo Weight (g)		Internal capacity (cm ³)		cm ³)	
0126	90°	180 [°]	360°	90°	180°	360°
10	120	150	200	1.2	2.2	4.3
15	220	270	380	2.9	5.5	10.7
20	600	700	1000	7.1	13.5	26.3
30	900	1100	1510	12.1	22.9	44.7
40	1400	1600	2280	20.5	39	76

Table 3 Specification-3

1-2 Effective output

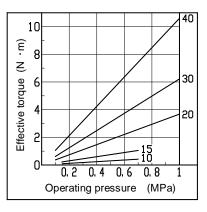
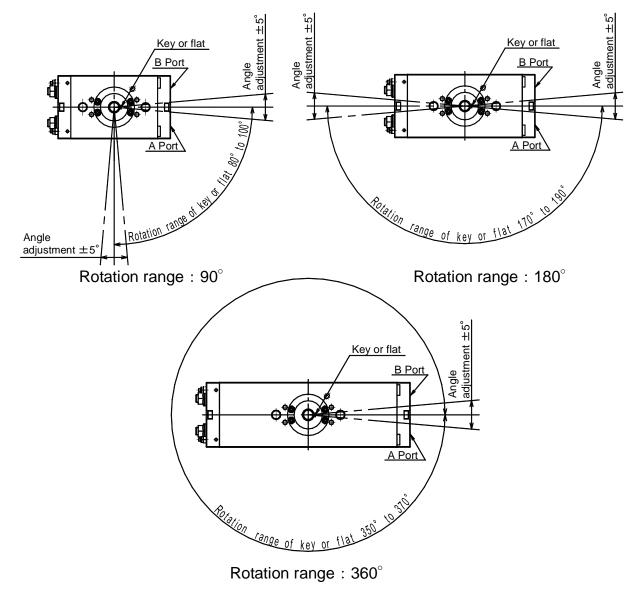
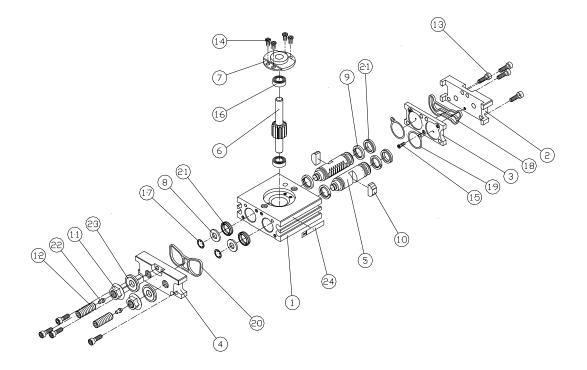
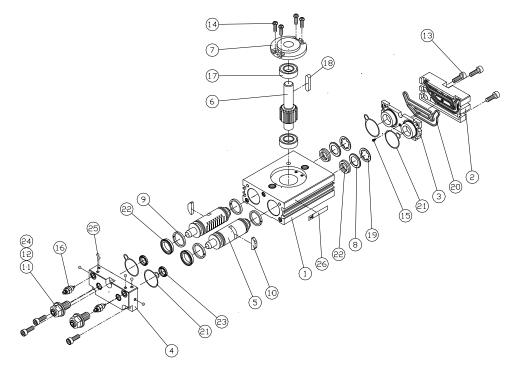



Fig.1 Effective output


1-3 Rotation range

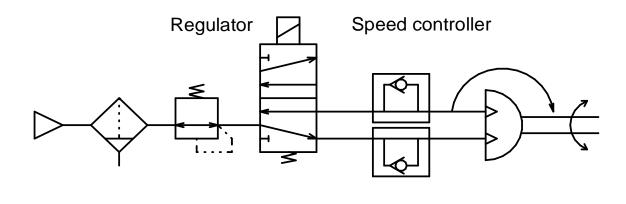
When pressurized from the Port A, the shaft will rotate clockwise. Flat face and parallel key position indicate B port is pressurized.


2. Internal structure and parts description

2-1 Size 10,15

24	Heat transferred label	1	
23	Seal washer	2	
22	Cushion pad	2	
21	Piston packing	4	
20	End cover gasket	1	
19	Cover gasket	2	
18	Packing	1	
17	Retainer	2	
16	Bearing	2	
15	Cross recessed No.0 screw	1	
14	Cross recessed No.0 screw	4	
13	Hexagon socket head screw	8	
12	Adjust bolt	2	
11	Hexagon nut with flange	2	
10	Magnet	2	Including magnet built-in type
9	Wear ring	4	
8	Packing retainer	2	
7	Bearing retainer	1	
6	Shaft	1	
5	Piston	2	
4	End cover	1	
3	Plate	1	
2	Cover	1	
1	Body	1	
No.	Description	Qty.	Note

2-2 Size 20,30,40



26	Heat transferred label	1	
25	Steel ball		No cushion : 4pcs., with cushion: 6pcs.
24	Seal washer	2	
23	Cushion packing	2	Only cushion type included
22	Piston packing	4	
21	Gasket	4	
20	Packing	1	
19	Retainer	2	
18	Parallel key	1	
17	Bearing	2	
16	Cushion valve Assoy	2	Only cushion type included
15	Cross recessed No.0 screw	1	
14	Cross recessed socket head screw	4	
13	Hexagon socket head bolt	6	
12	Hexagon socket head cap screw	2	
11	Hexagon nut with flange	2	
10	Magnet	2	Only magnet built-in type included
9	Wear ring	4	
8	Packing retainer	2	
7	Bearing retainer	1	
6	Shaft	1	
5	Piston	2	
4	End cover	1	
3	Plate	1	
2	Cover	1	
1	Body	1	
No.	Description	Qty.	Note

3. Basic circuit of the rotary actuator

3-1 Circuit structure

See below for the circuit to operate the rotary actuator using air filter, regulator, solenoid valve, and speed controller.

Air filter

Solenoid valve

Rotary actuator

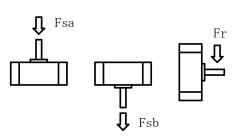
Fig.2 Basic circuit

3-2 Recommended equipment

Table 4 shows recommended solenoid valve, speed controller, tube for the basic circuit in Fig.2.

Size	Solenoid valve	Speed controller	Tube		
10	VZ1000 series (M5,Cv=0.05)	AS1000 series(M5)	φ 4 ∕ φ 2.5		
15	VJ3000 series (M5,Cv=0.2)	AS 1000 Series(INIS)	φ4/φ2.3		
20	VZ3000 series (Rc1/8,Cv=0.2)				
30	VF1000 series (Rc1/8,Cv=0.15)	AS2000 series(Rc1/8)	φ 6 /φ 4		
40	VF1000 Selles (RC1/6,CV=0.15)				

Table 4 Recommended equipment


Solenoid valve is selected by elastic seal method

^{6/22}**4.** Mounting

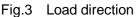
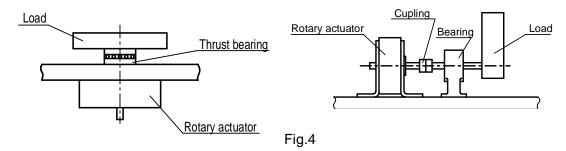
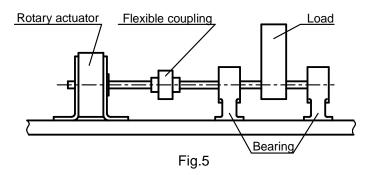

4-1 Restriction of the load to axis

Table of load below shows the allowable load when no moving load applied to axis direction. Avoid applying load to the axis directly as much as possible.


Table5 Allo	wable load		(N)
	L	oad direction	n
Size	Fsa	Fsb	※ Fr
10	15.7	7.8	14.7
15	19.6	9.8	19.6
20	49	29.4	49
30	98	49	78
40	108	59	98

*Point of application of force of Fr is the center of shaft flat face and longer dimension of the key.



Although allowable radial, thrust load can be applied where no moving load exist, direct load to the axis should be avoided as much as possible. Example below is recommended so that the load is not applied to the axis directly.

4-2 Operation of axis fitting referring

As in Fig.5, alignment of the rotary actuator and the mating axis is necessary when the rotary actuator is used with its axis lengthened. If misaligned, partial load becomes high and the axis is applied with excessive bend moment. Under this condition, stable operation is not available which lead to cause the damage of axis. In this case, flexible fitting (flexible joint specified by JIS) becomes necessary.

4-3 Flange application

See table 6 for L dimension of the body. JIS hexagon socket head bolt is neatly placed in the rotary actuator groove.

	Table 6					
Size	L	Bolt				
10	13	M 4				
15	16	M 4				
20	22.5	M 6				
30	24.5	M 8				
40	28.5	M 8				

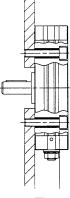


Fig.6

4-4 Piping and operating direction

Fig-7 shows piping ports of the rotary actuator. Table-7 shows the port size.

Та	Table 7 Port size					
Size	Port size					
10 15	M5×0.8					
20 30 40		Rc 1/8, G 1/8 NPT 1/8, NPTF 1/8				

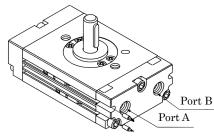
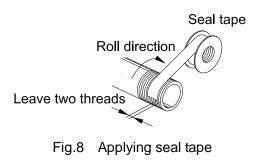


Fig.7 Port location


Fixed orifice is equipped in the rotary actuator port. Don**q** enlarge the hole. Enlarged hole increases the operation speed of the rotary actuator and the impact which lead to cause the breakage of the rotary actuator.

The axis rotates clockwise when pressurized from A port. Perform followings before piping.

- a) Flush or clean the piping to eliminate metal swarf, cutting oil and dust before connecting piping.
- $\rm b$) Mind so that the piping swarf and sealing material do not enter into the piping when screwing in piping and fitting. When using the seal tape, leave 1.5 \sim 2 threads.

4-5 Operating air

Air supplied to the rotary actuator shall be cleaned by the filter. CRQ2 series is lubrication free.

5. Setting rotation time

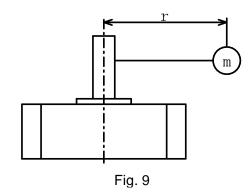
The load inertia lead to cause the damage of the shaft and internal parts even if generated torque of rotary actuator is small. The calculation of load inertia moment and kinetic energy is necessary to set the rotation time for operating the rotary actuator.

5-1 Inertia moment

Inertia moment indicates scales how hard to rotate the object, and also how hard to stop rotating object.

An object started by the rotary actuator is getting to have inertia force. When the rotary actuator stops at the stroke end, the actuator received big impact (kinetic energy) due to inertia force. Please refer below for calculation of kinetic energy

1 .	E : Kinetic energy	J
$E = \frac{1}{2} \times I \times \omega^2$	I : Inertia moment	kg \cdot m 2
2	ω : Angular speed	rad∕s

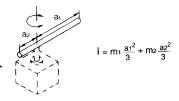

Allowable kinetic energy for the rotary actuator is limited. The limit of rotation time is obtained by calculating inertia moment. Please refer following for obtaining inertia moment.

Basic inertia moment

$$I = m \cdot r^2$$

m : Weight of load. kg

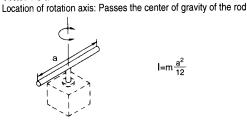
r : Load center of gravity and distance of rotation axis. m

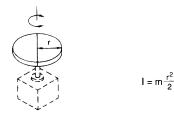


This shows inertia moment of ‰ (weight)+at ‰ from the rotation axis. Calculation of inertia moment depends on the shape of the object. Please refer the table on the next page for inertia moment calculation.

Table for calculation of Inertia moment

1 Thin rod


Location of rotation axis: Perpendicular to the rod and passes one end


 $l=m\frac{a^2}{12}$

 $l=m\frac{a^2}{12}$

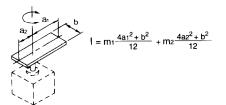
2 Thin rod

6 Column (Including thin round board) Location of rotation axis: Center axis

⑦ Sphere Location of rotation axis: Diameter

 $I = m \frac{2r^2}{5}$

(8) Thin round board Location of rotation axis: Diameter


(9) With a load at the end of the lever

 $1 = m \frac{r^2}{4}$

(4) Thin rectangular board (Rectangular parallelopiped) Location of rotation axis: Perpendicular to the board and passes one end (It is the same for the rectangular parallelopiped made with thicker board)

(5) Thin rectangular board (Rectangular parallelopiped) Location of rotation axis: Passes the center of gravity of the board and perpendicular to the board (It is the same for the rectangular parallelopiped made with thicker board)

(3) Thin rectangular board (Rectangular parallelopiped) Location of rotation axis: Passes the center of gravity of the board

 $I = m \frac{a^2 + b^2}{12}$

- $I = m_1 \frac{a_1^2}{3} + m_2 a_2^2 + K$ Example) K = m_2 $\frac{2r^2}{5}$, referring to the case \bigcirc that the state of m₂ is a ball.
- 10 Gear Transmission
- (A) No. of gear teeth = a (R
 - 1. Calculate moment of inertia IB around axis (B).
 - 2. Replace moment of inertia la around axis (A) with IA. IA = $\left(\frac{a}{b}\right)^2 I_B$

5-2 Kinetic energy

Table 8 shows the allowable kinetic energy of the rotary actuator. The end angular speed ω is obtained by:

			57	
Allowable kinetic energy mJ			Cushion angle	
Size	No cushion	Cushion type	Cushion angle	
10	0.25	—	—	
15	0.39		—	
20	25	120	40°	
30	48	250	40°	
40	81	400	40°	

Table 8	Allowable kinetic energy
---------	--------------------------

% Allowable kinetic energy of cushion type is max. adsorption energy when the cushion needle adjustment is optimum.

$$\omega = \frac{2\theta}{t} \qquad \qquad \theta : \text{Rotation angle} \qquad \text{rad} \\ \text{t} : \text{Rotation time} \qquad \text{s}$$

Kinetic energy E is obtained by:

$$\mathbf{E} = \frac{1}{2} \times \mathbf{I} \times \boldsymbol{\omega}^2$$

Therefore, the rotary actuator rotation time is:

$\mathbf{\rho} \mathbf{I} \mathbf{\rho}^2$	E : Allowable kinetic energy	J
$t \ge \sqrt{\frac{2 \times I \times \theta^2}{D}}$	θ : Rotation angle	rad
νE	I : Inertia moment	kg \cdot m 2

Angular speed ω after t sec. at isometric acceleration is obtained as below $\omega = \omega \times t - - - - - - - - (1)$ ω : Angular acceleration $\theta = \int \omega t \, d \, t = \frac{1}{2} \omega t^2 + C - - - - - (2)$ C : Integral constant Seconds of arc at t = 0 is $\theta = 0$. Therefore C = 0. $\theta = \frac{1}{2} \omega t^2 = \frac{1}{2} \omega t$ Therefore, $\omega = \frac{2}{t} \frac{\theta}{t}$

5-3 External stopper

When kinetic energy generating the load exceeds the rotary actuator allowable kinetic energy, the inertia force has to be adsorbed by externally installed cushioning function.

5-3-1 Install position of external stopper

External stopper lead to cause the rotary actuator axis torsion, damage and the breakage of the axis bearing depending on install location of stopper and load shape and the place.

Place an external stopper in apposition that is away from the rotary actuator or the material point.

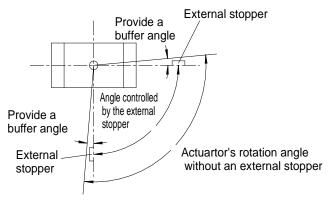
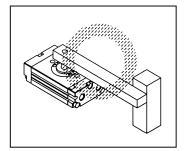
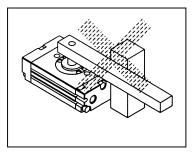




Fig. 10

External stopper acts as fulcrum. Load inertia force is applied to the shaft as bending moment

Fig. 11

Inertia force generated by the load is directly applied to the axis if the external stopper on the opposite side of the load.

5-3-2 Caution on using external stopper

Angle adjustment is available for CRQ2 series rotary actuator. Mind so that the hexagon socket set screw (angle adjusting screw) does not collide into the piston.

6. Rotary actuator with auto switch

The piston of rotary actuator with auto switch is attached with magnet on it, and equipped with auto switch outside to detect the piston position (shaft flat face and key groove position).

Table 9

		Electrical				Load volt	age	Autoswite	ch part no.	ead wire le	engt	h(m																			
Type	Special function	Electrical	Indicator	Wiring(Output)		DC	AC	Electric	al entry	0.5	3	5	Applie	d load																	
		entry				00	70	Vertical	Horizontal	(Nil)	(L)	(Z)																			
auto tch			Presense	3 wires Equivalent to NPN	—	5V	—	A96V	A96	•	•	—	IC circuit	—																	
eed aut switch	—	Grommet			24V	—	100V	A93V	A93	•	٠	—	-	Relay																	
Reed swit			Nil	2 wires	24 V	5V,12V	00V or les	A90V	A90	•	٠	—	IC circuit	PLC																	
				3 wires(NPN)	24V	5V,12V		M9NV	M9N	•	•	0																			
ų				3 wires(PNP)	_	_		M9PV	M9P	•	•	0																			
to switch					2 wires	24V	24V		M9BV	M9B	•	•	0		Relay																
state auto				3 wires(NPN)		5V,12V	-	F9NWV	F9NW	•	•	0	—	PLC																	
Solid st	Diagnosis display (2 color display)						3 wires										1					3 wires(PNP)	_	—		F9PWV	F9PW	•	•	0	
			2 wires	24V	12V		F9BWV	F9BW	•	•	0																				
	Better water resistance					(10~28V)		_	F9BAL	_	•	0																			

6-1 Auto switch specification

Lead switch

• Lead wire-D - A90 , A93 : Oil resisting vinyl cap tire cord ϕ 2.7

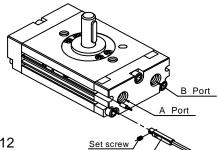
 $18 \text{mm}^2 \times 2 \text{ core (brown, blue) } 0.5 \text{m}$

D - A96 : Oil resisting vinyl cap tire cord ϕ 2.7

 $15 \text{mm}^2 \times 3 \text{ core}$ (brown, black, blue)0.5m

- Insulation resistance-50M $\Omega\,$ or more at DC500Vmega (Between the lead wire and the case)
- · Voltage resistance-AC1000V for 1min. (Between the lead wire and the case)
- Operation time-1.2ms
- Ambient temp.- 10~60°C
- Impact resistance-300m/s² { 30.6G }
- Leak current-0
- Protection rate-IEC529 standard IP67 (JIS0920) watertight
- When the lead wire length is 3m, the part number is suffixed with 1/2 ex)D-A90L

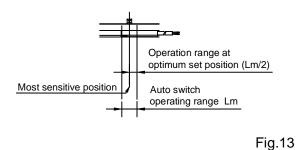
Solid state switch

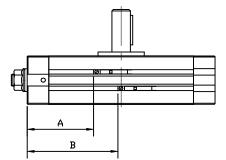

+ Lead wire-Oil resisting vinyl cap tire cord ϕ 2.7

0.15mm²×3 core (brown, black, blue)0.5m,18mm²×2 core(brown, blue)0.5m

- Insulation resistance-50M $\Omega\,$ or more at DC500V (Between lead wire and the case)
- Voltage resistance-AC1000V for 1 min. (between lead wire and the case)
- Operation time-1ms or less
- Ambient temp.- 10∼60°C
- Impact resistance-1000m/s² { 102G }
- Protection-IEC529 standard IP65 (JIS0920) jet proof

6-2 Auto switch installation


Use small driver (5 \sim 6mm of grip diameter) to tighten auto switch set screws with 0.1 \sim 0.2N·m of tightening torque. Use slotted setscrew (with urethane damper) as setscrew.



Auto switch

Table	10
-------	----

		Reed auto switch					Solid	state auto sw	itch
Size	Rotation	А	В	Operation angle θ m	Hysteresis angle	А	В	Operation angle θ m	Hysteresis angle
	90°	15	21.5			19	25.5		
10	180°	18	31	63°	12°	22	35	75°	3°
	360°	25	52.5			29	56.5		
	90°	18.5	27			22.5	31		
15	180°	22.5	39.5	52°	9 °	26.5	43.5	69°	3°
	360°	30.5	64.5			34.5	68.5		
	90°	36	48.5			40	52.5		
20	180°	42	67.5	41°	9 °	46	71.5	56°	4°
	360°	55.5	106			59.5	110		
	90°	43	59			47	63		
30	180°	51	82	32°	7°	55	86	43°	3°
	360°	62	125.5			66	129.5		
	90°	50	69			54	73		
40	180°	59.5	97.5	24°	5°	63.5	101.5	36°	4°
	360°	72.5	152			76.5	156		

Operation angle θ m : The value in which the auto switch operating range % m+is converted to axis rotating value

Hysteresis angle : Value in which the auto switch hysteresis is converted to angle
If the auto switch is set in dimension %+, the magnet is placed around the most sensitive area of the switch when the piston reaching the stroke ends.

(When rotation angle is $90^\circ~$ and $180^\circ~$)

6-4 Internal structure and operation principle

7. Cushions

- a) Rotary actuator is not adjusted so that the cushions work during shipment. Adjust the cushion valve attached to the cover depending on rotation time and load inertia moment. (See Fig 15)
- b)Rotating the cushion valve reduces the orifice diameter and increases cushion effect. Counterclockwise increase orifice diameter and reduces cushion effect.
- c) Tighten the cushion valve lock nut properly. Loose lock nut lead to cause the cushion valve to rotate and initially set cushion value changes. Re-adjustment is necessary in this case.
- d) Cushion packing wears out during long period of operation, and cushion effect becomes weaker. Re-adjustment is necessary.
- e) Dong operate the actuator with the cushion valve orifice completely closed. The piston may bumps into the stroke end, not fully travel the stroke, or the pressure exceeds the proof pressure of the cushion packing.
- f) Dond start the actuator with the cushion valve orifice completely open. Since this means an actuator without a cushion, the impact is big. If the actuator operate with allowable energy in table 2 with this condition, the rotary actuator may be broken. Open the cushion valve and the speed controller gradually from closed condition.

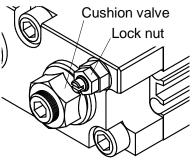


Fig.15

8. Maintenance · Inspection

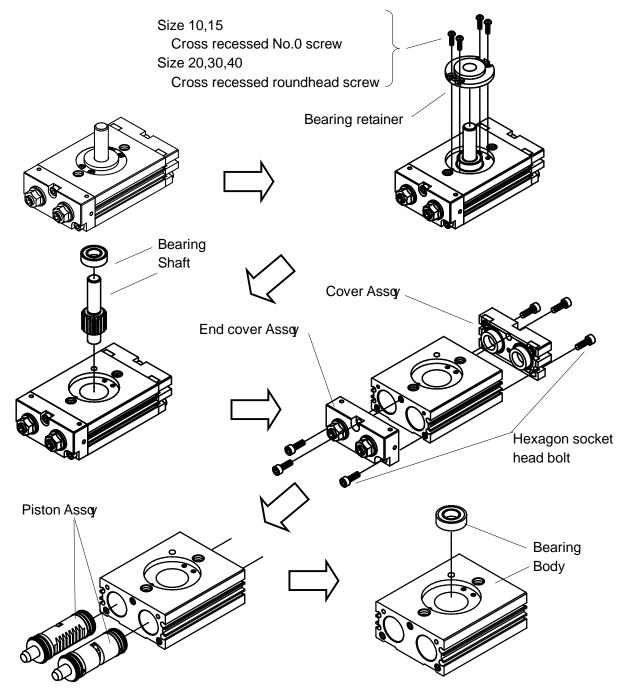
Periodic inspection is necessary for optimum use. Generally, annual inspection is recommended for the rotary actuator. Even if no problem is found, seal parts replacement is recommended every three years. It is highly possible that the actuator is operated out of specification when the components like shaft, pinion, rack, bearing are broken. Please revise the operating condition. In this case, please return the broken actuator to SMC to repair.

8-1 Periodic inspection

Check followings for periodic inspection

- (1) If the rotary actuator set screw become loose
- (2) If the rotary actuator set frame become loose
- (3) Smooth operation
- (4) External leak

If problem found, tighten additionally or disassemble to repair.


8-2 Disassemble and reassemble

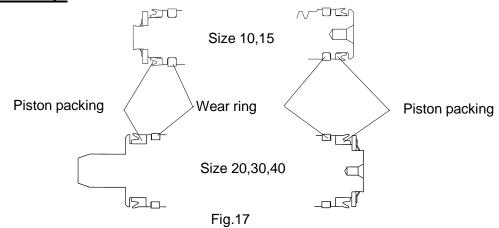
8-2-1 Caution on disassemble

- (1) Disassemble where clean and spacious place.
- (2) Cover the rotary actuator pipe inlet and the end of rubber hose after removing the rotary actuator.
- (3) Mind not to damage internal sliding surface of the rotary actuator when disassembling it.
- (4) Please consult with us when you have any question on disassembling and inspection.

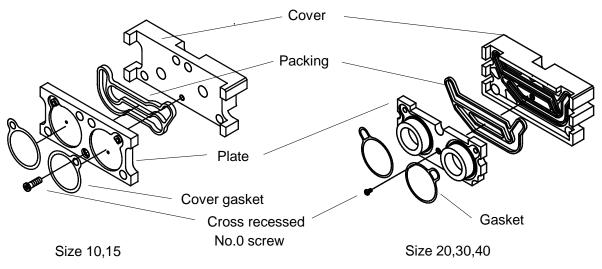
8-2-2 Disassembling procedure

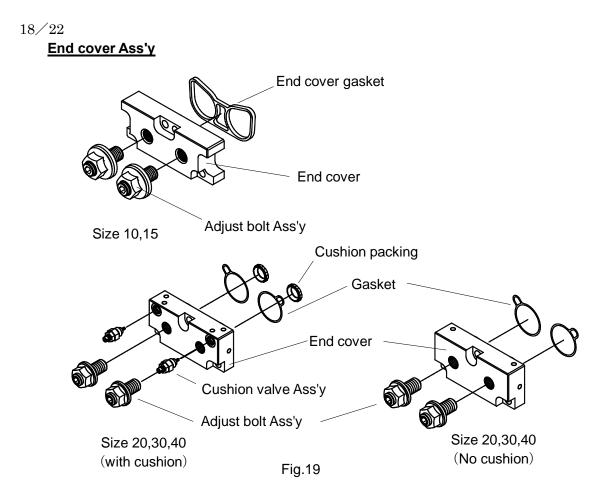
- (1) Loosen cross recessed no.0 screw (size 10,15) or roundhead screw (size 20,30,40) .
- (2) Pull out the bearing retainer and the shaft from the body. Remove the bearing from the housing at this time.
- (3) Loosen hexagon socket head bolt to remove the cover Assay and the end cover Assay.
- (4) Push piston Assay from one side to pull out two piston Assays from the body.
- (5) Take out the bearing from the body.

8-2-3 Assemble procedure

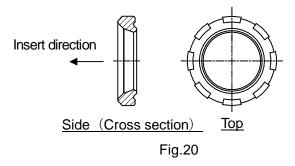

(1) Clean parts thoroughly before assembling to remove dust.

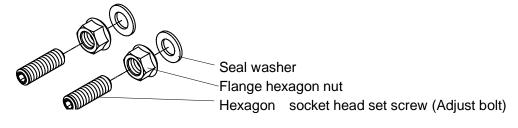
Apply grease to parts where specified in table 11 so that the surface become glossy (Not too much!). Donq damage the packing when attaching the piston packing to the piston.

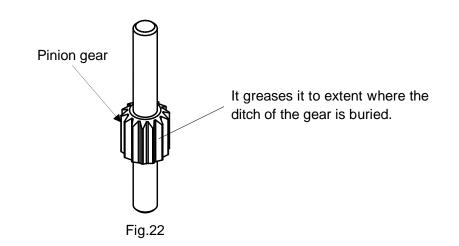

Table 11 Parts a	pplied with grease
Grease applied parts	Grease
Cylinder internal surface	
Piston packing groove	
Piston packing	GR-S-010
Cover gasket	(Lithium mineral oil grease
End cover gasket	No.2)
Gasket	
Cushion packing	
Pinion gear	Dow coring Molykote BR2-Plus

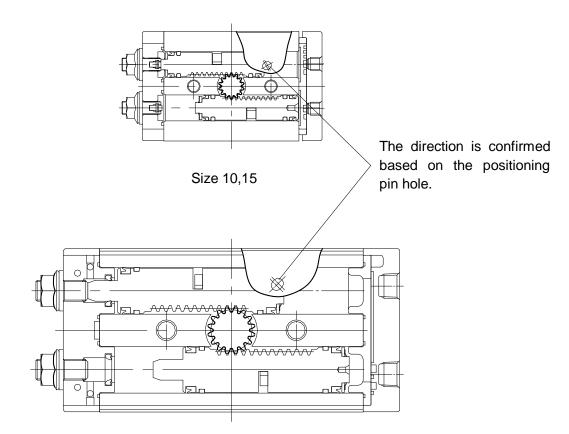

	_			
able 11	Parts	applied	with	arease

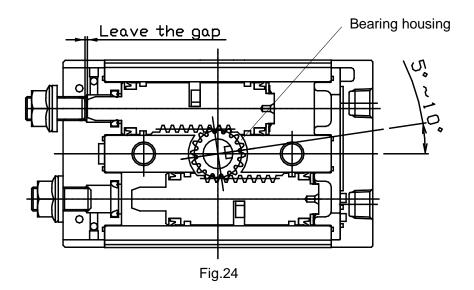
Piston Ass'y






Insert and attach the cushion packing and the packing with the direction in the drawing below.

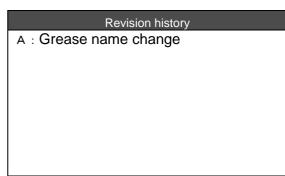

Adjust bolt Ass'y


(2) Set the bearing to the housing of the body, and insert the piston Assay to the body. Since the piston packing goes through the bearing housing, insert the piston Assay slowly pressing the packing inside so that packing is not gouged.Pay attention to the direction when you insert the piston. (See fig. 23)

Size 20,30,40

<u>Shaft</u>

(3) Mount the cover and the end cover, and push the piston Assøy and the cover until they touch the end cover as in Fig.24 Adjust the hexagon socket head set screw (adjust bolt) so that the screw does not contact with the piston Assøy.


- (4)Mount the shaft. Key groove or flat direction is the same as the cover direction, and mount the shaft so that the shaft is <u>on the right turning upward by $5 \sim 10^{\circ}$ to horizontal line(see above)</u>. If the key groove rotation range is inadequate or displaced, correct the piston Ass**q** to the right position and assemble as specified in clause (4).
- (5)Mount the bearing retainer and tighten cross recessed No.0 screw or cross recessed round head screw.
- (6)Perform operation test after assembling and check external leakage.

8-3 Trouble shoot

Phenomenon	Possible cause	Remedy
Actuator not operate	Correct supply pressure is not applied	Adjust the setting of the regulator at pressure supply side
	Directional valve(solenoid valve) is not switched	Apply correct signal to directional valve(solenoid valve)
	Air leakage from the piping	Check piping to stop leakage
	Orifice clogging in the cover port	Remove the cover and clean the orifice. 1.Flush piping 2.Check the air filter
Operation is not	Partial friction of the load	Reduce the friction resistance
smooth	Actuator axis and mating axis not aligned	Use flexible fitting for the joint
	Output shortage due to inadequate supply pressure	Adjust the supply pressure so that load rate is less than 50% for stable operation
	Speed controller works too much	Each size has its actuator speed adjusting rage. Readjust the speed controller
Rotation angle changes dramatically	Internal parts damage	 Replace by a new actuator, and do followings. 1. Calculate the kinetic energy applied to the actuator, and adjust the speed controller so that the rotation time is appropriate. 2. Adsorb the load kinetic energy by applying the external stopper and shock absorber. Adjust the adjust bolt so that it does not contact with the piston, and determine the rotation end by external stopper.

22	/22
/	

Phenomenon	Possible cause	Remedy
Air leaks from the shaft	Piston packing wears out	Replace with new piston packing
Pinion gear breakage	Pinion gear broken by excess kinetic energy applied to the actuator	 Replace by new actuator, and do followings 1. Calculate the kinetic energy applied to the actuator, and adjust the speed controller so that the rotation time is appropriate. 2. Adsorb the load kinetic energy by applying the external stopper and shock absorber. Adjust the adjust bolt so that it does not contact with the piston, and determine the rotation end by external stopper.
	(when cushion equipped) Cushion needle adjustment is not optimum. Kinetic energy is not adsorbed by the cushion.	 Replace by new actuator, and do followings. 1. Adjust the cushion needle at optimum condition 2. Confirmation if kinetic energy generated by the load is less than cushion absorbable energy
Rotation angle inadequate	The adjust bolt is set lower than necessary rotation angle	Adjust the adjust bolt to the correct position
	No allowance in actuator rotation angle. Actuator rotation angle deviated to the external stopper.	Remove the external stopper to check the all rotation range of actuator to set the external stopper to the correct place.
	(When cushion equipped) Cushion needle is closed	Adjust the cushion needle
Auto switch not turn ON/OFF	Auto switch set position is not correct	Set the auto switch at correct position

SMC Corporation 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021 JAPAN

Tel: + 81 3 5207 8249 Fax: +81 3 5298 5362 URL http://www.smcworld.com

Note: Specifications are subject to change without prior notice and any obligation on the part of the manufacturer. © 2013 SMC Corporation All Rights Reserved